Основы горного дела

Геомеханика

Геомеханика, как это следует из наименования, является одной из наук о Земле. И в этом отношении находится в одном ряду с другими науками о Земле, такими как география, геодезия, геология. Со всеми ними геомеханика имеет тесные связи, особенно с геологией, а именно с её разделом - инженерная геология.

Геомеханика в широкой степени использует методы и результаты других фундаментальных наук, в первую очередь, математики, в частности математического анализа, прикладной математики, математического моделирования и др.; при натурных исследованиях широко применяются достижения смежных разделов физики и химии.

Если оценивать геомеханику с точки зрения деления наук на фундаментальные и прикладные, то по отношению к механике вообще, геомеханика является прикладной наукой, а по отношению к горной науке - одной из фундаментальных.

Исходя из этого, геомеханику можно определить как науку о прочности, устойчивости и деформируемости массивов горных пород, горнотехнических объектов и сооружений в поле природных и техногенных сил, т.е. сил, вызванных влиянием деятельности человека, в частности, горных работ.

Главной инженерной задачей геомеханики является научное обоснование и разработка способов управления механическими процессами в породных массивах для обеспечения безопасности горных работ и повышения производительности и надёжности технологических процессов.

При этом основные процессы, изучаемые геомеханикой, можно подразделить на три большие группы:

- формирование напряжённо-деформированного состояния массивов пород и его изменение в связи с проведением выработок;

- динамические процессы и явления в массивах горных пород;

- сдвижение горных пород, проявляющееся в самых разнообразных формах.

В соответствии с приведенным выше определением геомеханики, основным объектом исследований в геомеханике является породный массив, а точнее, механические процессы, происходящие в массиве и связанные, главным образом, с проведением в нём горных выработок.

Вместе с тем в геомеханике первостепенное значение имеет анализ характера и форм проявления механических процессов в различных горно-геологических условиях ведения горных работ. При этом особую важность приобретают натурные наблюдения и инструментальные методы измерений с целью определения основных параметров изучаемых процессов в конкретных условиях: напряжений, деформаций, сдвижений горных пород и их изменения в зависимости от основных действующих факторов. Данные, получаемые из натурных исследований, позволяют типизировать изучаемые явления и процессы, уяснять их общий механизм и физическую сущность и проводить дальнейшие теоретические обобщения, устанавливать допустимую степень схематизации задач.

Учитывая весьма высокую неоднородность массивов горных пород и разнообразие горно-геологических условий, которые достаточно сложно описывать строгими математическими закономерностями для геомеханики в большей степени, чем для других разделов механики, характерно широкое использование методов моделирования, позволяющих выявить и оценить в исследуемых процессах роль различных действующих факторов и получить значения необходимых параметров даже при невозможности строгого решения задач аналитическими методами.

Вместе с тем всё большее применение в геомеханике находят и аналитические методы, что объясняется, в первую очередь, их развитием, а также общим прогрессом в понимании явлений геомеханики и степени воздействия отдельных факторов. При этом очень часто используют комплексные подходы, когда в качестве граничных условий при постановке аналитических задач используются результаты натурных наблюдений и моделирования.

В современной геомеханике широко используются понятия механики сплошной среды, в основу которой положены представления о материальных телах как «о некоторой субстанции, непрерывно заполняющей объем геометрического пространства и наделенной определенными физическими свойствами, отражающими статистические закономерности для реальных физических сред».

Введенное предположение о сплошности среды позволяет наделять бесконечно малые объемы тел свойствами среды и эффективно использовать аналитический аппарат дифференциального и интегрального исчисления. В частности, напряжения и перемещения отдельных точек среды представлять в виде некоторых функций координат и времени, непрерывных и дифференцируемых вплоть до такого порядка производных, который обеспечивал бы требуемую точность решения задачи.

В механике сплошных сред различают две категории сил: внешние и внутренние.

Внешние силы—это приложенные к рассматриваемому объекту силы, вызываемые действием других тел. Их подразделяют на поверхностные и объемные.

Поверхностные силы (например, давление) приложены к поверхности тела и характеризуют конкретное взаимодействие его с другими телами.

Объемные или массовые силы приложены к внутренним частям тела (силы веса, силы инерции и др.).

Внутренние силы — это силы связи между отдельными физическими частицами вещества. Внутренние силы под влиянием внешних изменяются, получают приращения, которые и являются основным предметом изучения механики деформируемых тел.

Кроме того, под воздействием внешних сил изменяются также положения отдельных точек в теле, расстояния между ними, т. е. тело деформируется.

Таким образом, определить напряженно-деформируемое состояние какого-либо тела под влиянием приложенных внешних сил — это значит определить в каждой его точке значения приращений внутренних сил и перемещений его точек в пространстве.

Как внешние, так и внутренние силы обычно характеризуют их интенсивностью, т. е. усилием, приходящимся на единицу площади поверхности или объема тела.

Вскрышные работы

Вскрышные работы, удаление горных пород, покрывающих и вмещающих полезное ископаемое при открытой разработке. Вскрышные породы, не содержащие полезных компонентов, называются пустыми породами и удаляются во внешние или внутренние отвалы. Если вскрышные породы (например, глины, пески, известняки, мел и др.) пригодны как, то они подвергаются дальнейшей переработке (дробление, сортировка и т. д.), после чего направляются потребителям. Вскрышные работы включают процессы подготовки пород к выемке, выемочно-погрузочные работы, транспортировку и отвалообразование.

Вскрытие месторождения полезного ископаемого, проведение капитальных горных выработок, открывающих доступ с поверхности ко всему месторождению или его части и обеспечивающих возможность проведения подготовительных горных выработок, необходимых для обслуживания добычных забоев.

Главные цели вскрытия месторождения - это создание транспортных связей между очистными забоями (местом добычи полезного ископаемого) и пунктом приема его на поверхности, обеспечение условий для безопасного перемещения людей; подача чистого воздуха к рабочим участкам (в шахтах).

Капитальные вскрывающие выработки делятся на главные и вспомогательные.

К главным относят выработки, имеющие непосредственный выход на поверхность: вертикальные и наклонные стволы шахтные и штольни; к вспомогательным -- квершлаги, гезенки, бремсберги и уклоны.

Подготовительные выработки — это главным образом штреки, пройденные по полезному ископаемому. Способы вскрытия месторождения весьма разнообразны и различаются по роду главных вскрывающих выработок, по их расположению относительно пластов или рудных тел, по наличию вспомогательных вскрывающих выработок, по числу подземных транспортных горизонтов. Способ вскрытия месторождения зависит от рельефа местности, ценности полезного ископаемого, формы, размеров и глубины его залегания, мощности и угла падения пластов или рудных тел, их числа и расстояния между ними и других факторов.

При выборе способа вскрытия влияние перечисленных выше геологических и горнотехнических факторов учитывается комплексно. К важнейшим из них следует отнести: минимальные первоначальные капитальные затраты и сроки строительства шахты; концентрацию производства при условии максимального увеличения добычи с очистного забоя; концентрацию добычи шахты на ограниченном числе одновременно разрабатываемых пластов; сокращение протяженности поддерживаемых горных выработок путем интенсификации очистных работ и периодического обновления горного хозяйства шахты за счет подготовки новых горизонтов или их реконструкции. Вскрытие месторождения вертикальными стволами является универсальным. Проходят не менее двух стволов (два безопасных выхода из шахты на поверхность), один из которых служит для подачи свежего воздуха в шахту, а второй -- для отвода воздуха на поверхность.

При добыче полезного ископаемого происходит обрушение горных пород и опускание вышележащих толщ. Поэтому при вскрытии месторождения крутых и наклонных шахтные стволы проходят в породах лежачего бока вне зоны сдвижения с тем, чтобы избежать деформации стволов. Кроме того, это исключает потери ценных руд в охранных целиках, необходимых для охраны стволов. Наклонными стволами вскрывают обычно обособленные пласты или рудные тела при сравнительно небольшой глубине их залегания. Стволы проходят под углом до 18° и при вскрытии пластов располагают по полезному ископаемому, а рудных тел -- в пустых породах лежачего бока. Первоначально наклонные стволы вскрывают запасы верхнего горизонта; по мере их отработки стволы углубляют до следующего горизонта и т. д.

Вскрытие месторождения с помощью штолен производят при сильно расчлененном рельефе местности, когда применение вертикальных или наклонных стволов технически невозможно или экономически нецелесообразно. В зависимости от расположения месторождения по отношению к горному склону штольни проводят по полезному ископаемому или по пустым породам. Возможно сочетание главных вскрывающих выработок, например вертикальных и наклонных стволов (комбинированный способ вскрытия). Наклонный ствол в этом случае используется для конвейерного транспорта полезного ископаемого на поверхность, а вертикальный -- для вспомогательных целей.

Вскрытие для открытой разработки месторождений включает проведение наклонных (капитальных) открытых выработок с поперечным сечением ступенчатой формы или в виде трапеции или треугольника (полутраншей) с поверхности земли или от разрабатываемой части карьера к вновь создаваемым рабочим горизонтам. Непосредственным продолжением капитальной траншеи является горизонтальная выработка с трапецеидальным (треугольным) поперечным сечением -- разрезная траншея (полутраншея), проводимая для создания первоначального фронта горных работ.

Определяющими элементами траншеи являются конечная ее глубина, продольный уклон подошвы, ширина основания, длина, углы откосов сортов. Глубина капитальных траншей равна высоте одного или нескольких уступов. На подошве траншеи размещаются транспортные коммуникации, и ширина основания траншей определяется габаритами транспортных сосудов (например, думпкаров, автосамосвалов). Продольный уклон наклонных капитальных траншей, предназначенный для или автомобильного транспорта, в большинстве случаев не превышает соответственно 40 и 80‰. Крутые траншеи для конвейеров имеют уклон до 18°, а для скипов -- до 45°. Если направление перемещения горных пород (грузопотоков) из карьера разное, каждый уступ может вскрываться отдельной капитальной траншеей. Групповые траншеи применяются для разделения грузопотоков вскрышных пород и полезного ископаемого. Внешними стационарными траншеями вскрывают карьеры, разрабатывающие горизонтальные и пологие залежи. Вскрытие месторождения скользящими съездами позволяет уменьшить объем горных работ в период строительства карьера. Скользящими съездами вскрывают обычно 2--4 нижних рабочих уступа при разработке крутопадающих месторождений. Вскрытие месторождения внутренними капитальными траншеями осуществляют при разработке наклонных залежей полезного ископаемого (до 27--30°). Трасса системы капитальных траншей (пространственное положение и направление продольной оси траншей) может быть простой, если траншеи расположены на одном борту карьера и направление движения транспортных средств не изменяется. Сложная трасса состоит из двух или нескольких участков различного направления, соединенных между собой посредством тупиков (при транспорте) или петель малого радиуса (обычно при автотранспорте). Спиральная трасса проходит по всем бортам карьера, опоясывая его один или несколько раз. Часто 2--3 верхних уступа карьера вскрывают внешними траншеями, а нижележащие уступы -- внутренними капитальными. Иногда карьеры вскрывают подземными выработками -- наклонными и вертикальными стволами со штольнями или тоннелями.

Выбор рационального способа вскрытия месторождения производится в период проектирования горного предприятия и является сложной инженерной задачей в силу специфики горного производства: нестабильность производственных условий (изменчивость природных факторов); разбросанность рабочих мест и их непрерывное перемещение; необходимость постоянного воспроизводства выбывающих (отработанных) очистных забоев. При проектировании, кроме классического математико-аналитического, применяется метод комплексной оптимизации проектных решений, при котором разрабатывается несколько вариантов Вскрытие месторождения с последующим составлением экономико-математической модели шахты (карьера). При последующем решении на ЭВМ отыскивается наилучший вариант. О Вскрытие месторождения природного газа, нефти, торфа см. в ст.

Разрушение горных пород, буровзрывные работы

Краткие исторические сведения

Первым взрывным веществом был черный (дымный) порох, который применяли в течение нескольких столетий для военных целей.

Порох изобретен в Китае в древние времена; дата его изобретения, а также имена изобретателей не установлены.

На Руси появление пороха относится к XIV в. Первые пороховые заводы, или как их в то время называли, пороховые мельницы, появились в XV в.

В 1548 - 1572 гг. в России порох впервые был использован для подрывания подводных скал и камней на реке Неман.

Первые сведения о применение пороха в горном деле в России приведены в труде великого русского ученого М. В. Ломоносова «О рождении и природе селитры», написанном в 1749 г. В этой работе он дал научное толкование взрывчатого превращения пороха и его действия на разрушаемую среду.

В 1835 г. Были проведены испытания, направленные на усиление действия пороха своеобразными приемами, представляющими собой зачатки использования кумулятивного эффекта.

Первый период развития взрывного дела характерен примитивной техникой буровых работ, которая, по описанию Ломоносова и его современника И. Шлаттера, сводилась к ручному бурению шпуров диаметром 28, 37 и 50 мм, глубиной около 1 м.

Заряжение шпуров производили рассыпным порохом, а при наличии в шпурах воды - патронированным в бумажную оболочку. Для забойки применяли глину. К этому времени были разработаны некоторые правила безопасности, рекомендовавшие, например, взрывнику не входить в забой тотчас же, если не произошел взрыв заряда пороха.

Первая половина XIX в. Ознаменовалась дальнейшим развитием техники буро-взрывных работ: появляются венцовые (крестовые) и другие формы головки буров, уточняются требования к пороху, глубина шпуров увеличивается до 1,5 м. Начинают применять взрывной вруб.

К тому же времени относится первая попытка классификации горных пород по добываемости, проведенная на рудниках Колывано-Воскресенских заводов, и открытие русскими инженерами электрического способа взрывания зарядов.

В 1812 г. В России П. Л. Шиллингом был изобретен первый электровоспламенитель. В 1822 г. Проводятся опыты по электровзрыванию.В дальнейшем вопросы электровзрывания были развиты М. М. Боресковым. Успехам электровзрывания в России немало способствовал известный совецкий ученый электротехник Б. С. Якоби. Идея создания контрольно-измерительных приборов для электрического взрывания принадлежит русским исследователям. Русскими специалистами (Гавриловым и Шпаковым) была разработана также и теория электро-взрывания.

В первой половине XIX в. Появляются перфораторы - вращательные бурильные механизмы, приводимые в действие вручную.

В 1831 г. В Англии был изобретен огнепроводный шнур (шнур Бикфорда).

В первой половине XIX в. Предложен ряд ВВ. более мощных и безопасных.

В 1853 г. русским ученым академиком Н. Н. Зининым был изобретен динамит. Обладая большой мощностью и значительным преимуществом по сравнению с порохом, динамит быстро получил распространение в практике взрывных работ.

Изобретение динамита потребовало создания соответствующих мощных инициаторов. В качестве начального импульса Н. Н Зинин применил небольшие пороховые заряды, воспламеняемые огнепроводным шнуром. Этот метод инициирования не позволял получить полную мощность от взрыва динамитного заряда. В 1867 г. Шведским инженером А. Нобелем был изобретен капсюль-детонатор, применение которого повысило эффективность взрывания динамитом.

На базе работ Д. И. Менделеева, разработавшего пироколлодий, русскими химиками в 1890 г. была создана взрывчатка желатина - основа для производства желатинированных динамитов.

В 1867 г. в Швеции были изобретены аммониты.

Вторая половина XIX в. Характеризуется развитием техники взрывных работ; появляются обоснованные требования к выбору места расположения снаряда ВВ с целью получения наибольшего сопротивления и взаимосвязи ее с величиной заряда ВВ.

Большое значение для развития науки и техники взрывного дела имели предложенные М. М. Фроловым и М. М. Боресковым формулы для расчета сосредоточенных зарядов.

В последней четверти XIX в. При переходе на разработку более глубоких горизонтов возникла необходимость в изыскании новых безопасных ВВ для взрывных работ в шахтах, опасных по газу или угольной пыли.

Методы взрывных работ

1. Метод шпуровых зарядов характеризуется удлиненными разрядами в шпурах. Применяется: на подземных разработках при проведении горных выработок и частично при отбойке полезных ископаемых в очистных выработках; на открытых разработках при мощности пласта полезного ископаемого до 6 м.; при селективной добыче, когда мощность отдельных пластов невелика; при разработке ценных полезных ископаемых ,когда необходимо сохранить их структуру или избежать дробления.

2. Метод скважинных зарядов характеризуется удлиненными зарядами, размещаемыми в скважинах диаметром 75 - 300 мм. Применяется на открытых разработках при высоте уступа более 6 м, а также на подземных разработках для отбойки руды

3. Метод камерных зарядов характеризуется применением сосредоточенных зарядов величиной от нескольких тонн до нескольких тысяч тонн, размещаемых в специально пройденных выработках - камерах. Применяется: на подземных разработках в рудной промышленности при отбойке полезных ископаемых, при взрывании междукамерных целиков и поглощении пустот после отработки камер; на открытых разработках при рыхлении больших масс породы на карьерах строительных материалов и при строительных работах.

4. Метод мало камерных зарядов (метод рукавов) заключается в применении небольших сосредоточенных зарядов ВВ, размещяемых в конечной части рукавов. Применяется на открытых разработках при высоте уступа не более 8 м; глубина рукавов не должна превышать 5 м. Широкого распространения метод не получил

5. Метод наружных зарядов (накладных зарядов) характеризуется применением зарядов, приложенных к разрушаемому объекту. Применяется: при дроблении негабаритных камней на открытых разработках; на горизонте грохочения при подземных разработках, а также при ликвидации заторов выше горизонт грохочения. Широкого распространения не имеет из-за высокого расхода ВВ.

Способы бурения

Основное назначение буровзрывных работ — отделение крепких руд и пород от массива и получение при этом горной массы, имеющей оптимальную для выемки и дальнейшей переработки кусковатость. Они должны обеспечивать достаточные для бесперебойной работы экскаваторов запасы взорванной горной массы, максимальную экономичность и безопасность, а также минимальное разубоживание руды и минимальное перемешивание различных руд. Массовую отбойку руды на карьерах производят скважинными (иногда котловыми) зарядами. Поэтому основной объем бурения на карьерах приходится на проходку скважин различной глубины и различных диаметров. Бурение шпуров имеет вспомогательное значение — при разделке негабарита.

На рудных карьерах применяют шарошечное, огневое и ударно-вращательное бурение. Некоторая часть общего объема бурения выполняется станками шнекового и ударно-канатного бурения.

Шарошечное бурение. На рудных карьерах значительные объемы буровых работ выполняют станками шарошечного бурения.

Станки шарошечного бурения обеспечивают достижение высоких скоростей проходки скважин и высокую производительность труда. К недостаткам этих станков относятся высокая стоимость и малая стойкость шарошечных долот.

При бурении крепких горных пород рекомендуется применять малые скорости вращения долота при максимально больших осевых нагрузках. Например, при бурении крепких железных руд (таконитов) трехшарошечным долотом диаметра 230 мм, армированным зубками твердых сплавов, при частоте вращения долота 0,5-0,6 с-1 и усилии подачи 260-280 кН скорость проходки достигала 3-9 м/ч, а объем бурения до полного износа долота 75-250 м.

Один из основных показателей режима работы станка шарошечного бурения — усилие подачи. С его увеличением резко возрастает скорость бурения, улучшается износостойкость долота.
Чаще всего долота выходят из строя из-за разрушения опор шарошек в результате попадания в подшипники опор породной мелочи и ее заклинивания.

Один из способов ликвидации заклинивания — увеличение давления сжатого воздуха до 6 · 10в5 Па для продувки скважин при бурении с образованием масляного тумана. Компрессоры станков должны обладать регулируемым (от 2 · 10в5 до 6 · 10в5 Па) давлением сжатого воздуха и способностью простого перехода с двухступенчатого на одноступенчатый режим работы. При существующих конструкциях долот эффективность шарошечного бурения можно повысить путем герметизации опор подшипников и подачи смазки в них. Для этого создана автомасленка, вместимость которой рассчитана на 14 ч работы долота при расходе масла 0,2 л/ч. С пылью борются путем сухого улавливания при помощи фильтра и смачивания пыли у забоя скважины водовоздушной эмульсией.

Ударно-вращательное бурение. При бурении монолитных изверженных пород выше средней крепости на рудных карьерах применяют буровые станки с погружными пневмоударниками.

Основная особенность ударно-вращателыюго бурения состоит в том, что ударные нагрузки на буровую коронку и ее вращение осуществляются от двух независимо работающих механизмов: вращение при помощи механизма на бурильном агрегате и удар посредством пневмоударника (т. с. минуя колонку штанг).

Станки ударно-вращательного бурения значительно легче станков шарошечного бурения, поэтому более транспортабельны. Они проще по конструкции, удобнее в работе. Этими станками можно бурить и наклонные скважины. Благодаря меньшему диаметру скважин и более густой сетки их расположения улучшается качество дробления, уменьшается выход негабарита.

Ударно-вращательные станки для бурения сильнотрещиноватых и кавернозных пород применять не рекомендуется из-за происходящих в этих условиях вибрации станка, систематических заклиниваний буровой коронки, значительного поглощения отработанного сжатого воздуха, вследствие чего резко ухудшается очистка забоя от буровой мелочи.

Огневое бурение. В кварцсодержащих породах высокой крепости механические способы бурения малоэкономичны из-за их низкой производительности и высокой стоимости. Наиболее эффективно в этих условиях огневое бурение, принцип которого заключается в нагревании породы до высокой температуры и ее разрушении. Оно успешно применяется на железистых кварцитах железорудных карьеров. Криворожского бассейна, где значительно производительнее шарошечное и ударно-вращательное бурение. Недостатки огневого бурения: высокая себестоимость и ограниченная область применения. В последние годы ведется работа по замене кислорода другими видами окислителей — прежде всего сжатым воздухом, что позволит расширить применение огневого способа бурения.